Color

Degrees of Freedom – 2 Dimensions

Degrees of Freedom – 3 Dimensions

Degree of Freedom

• 2 dimensions: 2 degrees of freedom

• 3 dimensions: 3 degrees of freedom

• Color: 3 degrees of freedom

• Degrees of Freedom is independent of the Representation

The Physics of Color

© The University of Waikato Te Whare Wānanga o Waikato | www.sciencelearn.org.nz

Color Blindness

• https://enchroma.com/pages/color-blind-test

How are colors produced: Additive - RGB

RGB Color Values

Color name	RGB triplet	Color	
Red	(255, 0, 0)		
Lime	(0, 255, 0)		
Blue	(0, 0, 255)		
White	(255, 255, 255)		
Black	(0, 0, 0)		
Gray	(128, 128, 128)		
Fuchsia	(255, 0, 255)		
Yellow	(255, 255, 0)		
Aqua	(0, 255, 255)		
Silver	(192, 192, 192)		
Maroon	(128, 0, 0)		
Olive	(128, 128, 0)		
Green	(0, 128, 0)		
Teal	(0, 128, 128)		
Navy	(0, 0, 128)		
Purple	(128, 0, 128)		

- 3 degrees of freedom
- 255 x 255 x 255 = 3 bytes = 16K colors

Bit Depth	Max # of Colors	Storage Required per Pixel
1	2	1 bit (1/8 byte)
2	4	2 bits (1/4 byte)
4	16	4 bits (1/2 byte)
8	256	1 bytes
16	65,536	2 bytes
24	16,777,216	3 bytes
32	4,294,967,296	4 bytes

How are colors produced: Subtractive - CMYK

©The University of Waikato Te Whare Wānanga o Waikato|www.sciencelearn.org.nz

How to create colors with CMYK?

Combine values of the primary colors cyan, magenta, yellow – and black.

Each of the colors are calculated in percentages – from 0 to 100%.

C:	100	0	0	0	0
M:	0	100	0	0	0
Y:	0	0	100	0	0
K:	0	0	0	100	0

© Precentitude

Color

- 3 degrees of freedom
- RGB additive screens
- CMY (K) subtractive printers
 - CMY is all that is needed
 - K added for cost since most images are black & white
 - Difficult to produce black with precisely C = M = Y

Conversion from RGB to CMYK

- If the RGB values are all 0 then the CMY values are all 0 and the K value is 1
- Otherwise use the following formulas:

$$w = \max(r/255, g/255, b/255)$$

$$c = (w - (r/255))/w$$

$$m = (w - (g/255))/w$$

$$y = (w - (b/255))/w$$

$$k = 1 - w$$

If the values are negative take the absolute value.

• The CYMK format represents colors on a scale from 0.0 to 1.0