
HW5i_C.docx (06/18/08)

CISC 1110 (Science Section)
Brooklyn College
Professor Langsam

Assignment #5

File Compression – RLE Encoding1

Run-length encoding (RLE) is a very simple form of data compression in which runs of data
(that is, sequences in which the same data value occurs in many consecutive data elements) are
stored as a single data value and count, rather than as the original run. This is most useful on data
that contains many such runs: for example, relatively simple graphic images such as icons, line
drawings, and animations.

For example, consider a screen containing plain black text on a solid white background. There
will be many long runs of white pixels in the blank space, and many short runs of black pixels
within the text. Let us take a hypothetical single scan line, with B representing a black pixel and
W representing white:

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWW

WWWWWWWWWWBWWWWWWWWWWWWWW

If we apply the run-length encoding (RLE) data compression algorithm to the above hypothetical
scan line, we get the following:

W12B1W12B3W24B1W14

Interpret this as twelve W's, one B, twelve W's, three B's, etc.

The run-length code represents the original 67 characters in only 18. Of course, the actual format
used for the storage of images is generally binary rather than ASCII characters like this, but the
principle remains the same.

However, consider the following sequence of characters:

AAAABCD

Using our algorithm we get the following:

A4B1C1D1

which is longer than the original! One solution is to only encode a run if two or more bytes are
repeated. Thus we would encode the sequence as:

AA2BCD

1 http://en.wikipedia.org/wiki/Run‐length_encoding

HW5i_C.docx (06/18/08)

We interpret this string to mean 2 ‘A’s followed by 2 additional ‘A’s followed by a single ‘B’,
‘C’ and ‘D’.

An algorithm for doing so is as follows2:

Encoder

Read two bytes, if they are equal output both of them, and then count how many bytes
equal to the first you have; output this value, and continue encoding. Of course you have
to discard the repeated bytes.

Note that the value can't be greater than 255, since a character (or byte) can not represent
an unsigned integer greater than 255). For the purposes of this program we will assume
that there are no repeats greater than 255. (For extra credit, you may suggest and program
a solution.)

If the bytes were not equal, then output the first, make the second the first, and get the
next byte as a second, and start again.

Pseudocode

Get two bytes
Loop
Are they equal?
Yes

Output both of them
Count how many bytes repeated we have
Output that value
Get next two bytes.
Repeat.

No
Output the first byte
Put the second, as first
Get a byte for the second one
Repeat.

2 http://www.arturocampos.com/ac_rle.html

HW5i_C.docx (06/18/08)

Decoder

 Pseudocode

Get one byte, put it to the output file, and now it's the 'last' byte.
Loop
Get one byte
Is the current byte equal to last?
Yes

Now get another byte, this is 'counter'
Put current byte in the output file
Copy 'counter' times the 'last' byte to the output file
Put last copied byte in 'last' (or leave it alone)
Repeat.

No
Put current byte to the output file
Now 'last' is the current byte
Repeat.

Write a program that implements the Encoder and Decoder algorithms. The encoder function
should read a file (defined in the main) and write an encoded file having the same name but with
the extension .enc. The decoder function should read a file with the extension .enc and produce
a file with the extension .txt.

Test you program on a file called input.txt which contains the following:

aaaaaabcddccc

The file input.enc should then contain the sequence:

aa4bcdd0cc1

Additional data files will be posted on the course website.

Be sure your program is neatly formatted and commented as discussed in class. All output is to
go to both the console (screen) as well as to a file.

