
HW5j_c.doc – 11/06/09 Page 1 of 9

CIS 1.5 (Science Section)
Brooklyn College
Professor Langsam

Assignment #5 - Brownian motion1 (AKA The Drunken Robot)

Brownian motion (named after the Scottish botanist Robert
Brown) is the seemingly random movement of particles
suspended in a fluid (i.e. a liquid or gas) or the mathematical
model used to describe such random movements, often called
a particle theory.

The mathematical model of Brownian motion has several
real-world applications. An often quoted example is stock
market fluctuations.

The Roman Lucretius's scientific poem On the Nature of Things (c. 60 BC) has a
remarkable description of Brownian motion of dust particles. He uses this as a proof of
the existence of atoms:

Observe what happens when sunbeams are admitted into a building and shed light
on its shadowy places. You will see a multitude of tiny particles mingling in a
multitude of ways... their dancing is an actual indication of underlying movements
of matter that are hidden from our sight... It originates with the atoms which move
of themselves [i.e. spontaneously]. Then those small compound bodies that are
least removed from the impetus of the atoms are set in motion by the impact of
their invisible blows and in turn cannon against slightly larger bodies. So the
movement mounts up from the atoms and gradually emerges to the level of our
senses, so that those bodies are in motion that we see in sunbeams, moved by
blows that remain invisible.

Although the mingling motion of dust particles is caused largely by air currents, the
glittering, tumbling motion of small dust particles is, indeed, caused chiefly by true
Brownian dynamics.

There have been many models proposed to explain Brownian
motion, however, it was Albert Einstein's (in his 1905 paper) and
Marian Smoluchowski's (1906) independent research of the
problem that brought the solution to the attention of physicists, and
presented it as a way to indirectly confirm the existence of atoms
and molecules. A simple demonstration of Einstein’s explanation
of Brownian motion can be seen here:
http://www.aip.org/history/einstein/brownian.htm

1 www.wikipedia.com

HW5j_c.doc – 11/06/09 Page 2 of 9

Imagine now a drunkard walking randomly in a city. The city is realistically infinite and
arranged in a square grid, and at every intersection, the drunkard chooses one of the four
possible routes (including the one he came from) with equal probability. Formally, this is
a random walk on the set of all points in the plane with integer coordinates. Will the
drunkard ever get back to his home from the bar? It turns out that he will.

Thought Experiment #12
Think of a person who walks always with a stride of length L. If the person walks in a
straight line and takes N steps, the total distance travelled is just D = N*L.

Figure 1

Thought Experiment #2
Now think of the same person heavily under the influence of alcohol The stride is still L,
but the direction is now random...sometimes forwards, sometimes to the left, to the right,
some staggering backwards too. In this condition, the total distance travelled is D N L=

For example, if the distance to be travelled is 100 meters when the stride length is 1meter,
the person walking in a straight line needs to take N = 100/1 = 100 steps, while the
drunkard must take N = 100*100/1 = 10,000 steps. Random walk is much slower than
linear walking because some of the time is spent staggering backwards. Nevertheless, the
person still moves away from the starting point.

2 http://www2.ess.ucla.edu/~jewitt/oort2-random.html3

HW5j_c.doc – 11/06/09 Page 3 of 9

Figure 2

Figure 3

Figures 2 and 3 represent a simulation of a random walk in two dimensions with more,
and smaller, steps. In the limit, for very small steps, one obtains the Brownian motion.

PART 1

In this assignment, we will program our Lego Robot to simulate a random (drunkard)
walk. You will choose a constant stride L (to be varied experimentally in the Lab) and a
random turning direction. A random number can be obtained using the BrickOS random
number function described below:

#include <stdlib.h>

//seed the random number generator
srandom(get_system_up_time());
x = random();
// x will contain a random number between 0 and some
// very large number

Example:

This program will display random numbers between 1 and 10 on the LCD.

#include <conio.h>
#include <unistd.h>
#include <stdlib.h>

int main() {

HW5j_c.doc – 11/06/09 Page 4 of 9

 int x;

 // seed the random number generator
 srandom(get_system_up_time());

 while (!shutdown_requested()) {
 x = random() % 10 + 1;
 cputs(" ");
 lcd_int(x);
 sleep(1);
 }
 return 0;
}

Use the functions that you developed in HW #3 to move forward, backward and turn (a
random amount).

Repeat the sequence 50 times.

Question: The drunkard robot moves forward and backwards at random. How will you
determine whether to use the motor_fwd or the motor_rev functions?

Algorithm: If you divide any random number by 2, you will get a remainder of either 0
or 1 (why?). Thus you can write:

if (random () % 2 == 0)
 //move forward

else
 //move backward

PART 2

Question: What happens when the drunkard hits a wall? We will assume that the
drunkard, upon hitting an obstruction (after cursing) staggers backwards and then turns in
a random direction.

Algorithm: In order to sense whether or not the drunkard (robot) has encountered an
obstruction we will have to make use of the robot’s touch sensor.

HW5j_c.doc – 11/06/09 Page 5 of 9

The RCX unit has three onboard sensor ports, labeled 1, 2, and 3.

Figure 4 RCX sensor ports

Figure 5 RCX touch sensor

To read from the touch sensor, we use the following function

#include<dsensor.h>

variable = TOUCH_X; // Reads either 0 or 1 into
// “variable”.
// X is either 1, 2 or 3
// depending on which port is
// used.

Example:

// Display "HUH" until such time as either Sensor 1 or
// Sensor 2 is activated.

 // Display "OUCH" whenever sensor 2 is activated.
 // Display "NICE" whenever sensor 1 is activated.
 while (1) {
 if (TOUCH_2)

HW5j_c.doc – 11/06/09 Page 6 of 9

 cputs("OUCH ");
 else if (TOUCH_1)
 cputs("NICE ");
 else

 cputs("HUH ");
 } // end while

One issue still remains. How do we have the robot check to see whether a sensor has been
activated while simultaneously processing the parts of the program that make our robot
move? The answer is to use a programming feature known as multitasking.

Multitasking:

#include <unistd.h>

We often want to run more than one task at once. This is, unfortunately, impossible with
only one processor. However, we can approximate this by switching tasks rapidly, giving
each task a slice of the processor time. This is called threading, and each task is a thread.
To make use of threads in BrickOS, we first write a standard function. Instead of calling
it in the normal way, we call it as follows:

tid_t variable; // This variable lets us keep track of
 // the thread.

variable = execi(&mythread_1, 0, 0, PRIO_NORMAL,
DEFAULT_STACK_SIZE);

...

.....

.........
kill(variable) // This stops the thread again.

Example:

// Simple example of multitasking which displays output on
// the LCD while simultaneously moving the robot.

#include <conio.h>
#include <dmotor.h>
#include <dsensor.h>
#include <unistd.h>
#include <stdlib.h>

tid_t task1, task2; // define two task id variables

HW5j_c.doc – 11/06/09 Page 7 of 9

// The parameters, argc and argv, in the two threads that
// follow allow us to send arguments to the threads. We
// will not be using them in our program.
int mythread_1(int argc, char *argv[]) {
 while (1) {
 motor_a_dir(fwd);
 motor_a_speed(100);
 msleep(1000);
 motor_a_dir(rev);
 msleep(1000);
 }
} // end mythread_1

int mythread_2(int argc, char *argv[]) {
 int result;
 while (1) {
 cputs("HELLO");
 msleep(1000);
 cputs("WORLD");
 msleep(1000);
 cputs(" ");
 result = random() % 10;
 lcd_int(result);
 msleep(1000);
 }
} // end mythread_2

// Start the program
int main() {

 // Seed the random number generator
 srandom(get_system_up_time());

 // Start the two children threads going
 task1 = execi(&mythread_1, 0, 0, PRIO_NORMAL,
 DEFAULT_STACK_SIZE);
 task2 = execi(&mythread_2, 0, 0, PRIO_NORMAL,

DEFAULT_STACK_SIZE);

 msleep(10000);
 while (!shutdown_requested()) {
 // detects if the OFF button is pressed
 msleep(100);
 }
 kill(task1);

HW5j_c.doc – 11/06/09 Page 8 of 9

 kill(task2);

 motor_a_dir(off);
 return 0;
}

STRATEGY FOR WRITING THE PROGRAM

A Quick Reference Guide to the BrickOS C++ may be found here:
http://brickos.sourceforge.net/docs/APIs/html-c++/ . We will be using only a small
portion of the many functions described in the guide.

The following libraries should be included at the top of your programs:

#include <conio.h>
#include <unistd.h>
#include <stdlib.h>
#include <dmotor.h>
#include <dsensor.h>
#include <tm.h>

You will be using some of the following BrickOS functions in your programs:

cls();
cputs(“string”);
lcd_int(integer);
motor_x_dir(fwd);
motor_x_dir(rev);
motor_x_dir(off);
motor_x_speed(power)
msleep(time);
sleep(time);
shutdown_requested()
srandom(get_system_up_time());
result = random();
variable = TOUCH_X;
task = execi(&thread_name, 0, 0, PRIO_NORMAL,

DEFAULT_STACK_SIZE);
kill(task);

1. First implement Part 1. Use the functions you developed in the previous

assignment,
2. Convert the main of Part 1 to be a thread
3. Write Part 2 as a second thread.
4. Write a main that starts (and kills) the two threads as in the example above.

HW5j_c.doc – 11/06/09 Page 9 of 9

Test your program using the BrickEMU in the CPlusVEBot system. Submit a printout of
your program. Be sure to use meaningful variables, proper style and to comment your
program as described in class.

