&

CIS 1.5 (Science Section) gt P T PP E R R EEEEEY o

Brooklyn College : [l HIE 5
Professor Langsam a B Al .

- MEEERFEEEEREEREEE

d HHEBBEHEBHEHEHEE

-lE EE HHEEHE
Assignment #4 IEEREE

=l
o |

n|[n

™ || L
mlm
fo || b

es
L
EE

This assignment will classify chemical elements. Although there are 118 elements listed in the Periodic
Table, the program will only work with a smaller subset of them.

A data file, PeriodicTable.txt, has been created in the following format:
Atomic number Name Atomic weight Group Period

You may download the file at: http://eilat.sci.brooklyn.cuny.edu/cis1 5/PeriodicTable.txt. You are to
write the following functions:

checkNumber — This function will receive an atomicNumber as a parameter (call by value)and will check
whether the atomicNumber is a valid number. Valid numbers are the values 1-118. If the number is
valid, it should print an appropriate message and return true; otherwise it should print an appropriate
error message and return false.

readData — This function receives an atomicNumber (call by value) and returns the corresponding
name, atomicWeight, and period (call by reference). Each time the function is invoked it opens the file
and searches for the corresponding entry in the data file.

printName — This function receives an element’s name and prints a heading and the name of that
element

isNobleGas — This function receives an integer representing the element’s group (call by value) and
returns true if the element is a noble gas and false otherwise. Elements in group 18 are noble gasses.

isAlkaliMetal — This function receives an integer representing the element’s group (call by value) and
returns true if the element is an alkali metal and false otherwise. Elements in group 1 are alkali metals.

isAlkaline — This function receives an integer representing the element’s group (call by value) and
returns true if the element is an alkaline earth metal and false otherwise. Elements in group 2 are
alkaline earth metals.

HW4f_C.doc 10/25/08 1

atomicParticles — This function receives an element’s atomicNumber and atomicWeight (call by value)
and returns the number of protons, neutrons and electrons in the atom of that element (call by
reference). Recall that:

number of protons = number of electrons = atomic number
number of neutrons = atomic weight — atomic number

classify — This functions will receive an atomicNumber (call by value) and call the function readData to
obtain that element’s relevant information. If the information is not in the PeriodicTable.txt data file, it
should print the message: “Element not listed yet.”

In all other cases it is to call the functions printName, isNobleGas, IsAlkaliMetal, isAlkaline and
atomicParticles in order to print the appropriate information. Note: with the exception of printName,
all printing is to be done by the classify function. Also note, that an element cannot be classified as in
more than one group (e.g., it cannot be both a noble gas and also an alkali metal), so you should be
using if...else statements. If the element is not a noble gass and is not an alkali metal and also is not an
alkaline earth metal, the function should print “Not classified yet.”

main — The main function is to use a loop to process date contained in an input file. An atomic number is
to be read in. The main function should call the function checkNumber to check that the atomic number
is valid. If the atomic number is valid it should call the function classify to print out all the information
(as described above) for that element. However, if the element number is not valid, an appropriate
message will be printed (by checkNumber) and go on to the next input.

When all the input has been processed the main function should print the total number of input
elements processed, and how many inputs were valid and how many inputs were invalid.

Input data:

Create a data file that contains the following entries:

2
120
20
19
79

Make up 10 more elements that will test your program. Include some invalid data (both too small and

too large) and include some elements whose names have not been listed yet as well as some whose
types have not been classified yet.

HW4f_C.doc 10/25/08 2

Sample Output:
For the data above your program is to print:

Element #2: Helium
Period 1

Classification: Noble Gas
Number of Protons: 2
Number of Neutrons: 2
Number of electrons: 2

Element #120: Invalid data

Element #20: Calcium

Period 4

Classification: Alkaline Earth Metal
Number of Protons: 20

Number of Neutrons: 20

Number of electrons: 20

Element #19: Name not listed yet

Element #79: Gold

Period 6

Classification: Not classified yet
Number of Protons: 79

Number of Neutrons: 118
Number of electrons: 79

Style:

Each function should have a good comment explaining its role in the program and what parameters it
receives. If the function calls another function, the comment should say so. Use meaningful variables
and indent your program as described in class. All output is to go to a file. Note that there is no console
input required, thus there is no reason to prompt the user.

Programming Note:

When a file is closed, the file pointer remains pointing to the last item that was read. In order to have
the pointer move to the beginning of the file, it is necessary to use the clear() file method. Each time the
function readData is called, it must begin searching through the periodicTable.txt file from the
beginning. Thus your function should be structured (in part) as follows:

HW4f_C.doc 10/25/08 3

infile.open(C'OriginalFile.txt™); //open the file
it (Ninfile.is_open()) { //checks to see it Tile was opened
//The file could not be opened
cout << endl << "ERROR: Unable to open file" << endl;
system ('PAUSE™);
exit(l);

-

nfile.clear(); //REQUIRED prior to reopening file

//search through the file for the desired information

infile.close(); //close the file

HW4f_C.doc 10/25/08 4

