
Development of a system for teaching CS1 in C/C++ with
Lego NXT robots

A. Delman, A. Ishak, L. Goetz, M. Kunin, Y. Langsam and T. Raphan

langsam@sci.brooklyn.cuny.edu

Department of Computer and Information Science, City University of New York (Brooklyn College),

Brooklyn, New York, USA

ABSTRACT
This paper describes the development of a system for teaching
C/C++ using a Lego™ NXT in a CSI college course on introductory
programming. The programming of the NXT robot has been
implemented using a C/C++ cross-compiler, which generates code
that runs on an Open Source firmware platform, nxtOSEK. The
system has built in commands and objects that run the motors and
receive information from the sensors that are on the robots. The
cross-compiler has been embedded in an Open Source Integrated
Development Environment (IDE) Code::Blocks. The programming
environment for the NXT has evolved from a previous development
using the Lego™ RCX and has the advantage that it utilizes a
Bluetooth interface, while the RCX uses a tower based infrared
communication device. The NXT is more reliable and can be
programmed to pair a specific interface with a particular robot, so
that there is no cross-talk when different robots are utilized in a
classroom setting. The IDE and robotic software executes on a
virtual machine running under the freely available software, Sun™
VirtualBox. This allows for a uniform programming platform for
Windows, MacOS, and Unix/Linux. The use of robots in CS1 affords
science and engineering students the opportunity to learn sensory-
motor based control, to work with an IDE early in their careers, and
to gain experience with development and debugging tools that can be
utilized throughout the students’ academic and professional careers.

Keywords
College, Introductory Programming, Robotics, Science, CS 1

1. INTRODUCTION
We have recently presented results on the development of Lego™
RCX platform for teaching C/C++ to students entering in an
Introductory Course in Programming (CS1). The purpose of our
development was to address the needs and interests of students who
plan on entering science-based careers and who would be better
served by a course whose emphasis is on scientific and engineering
applications of programming [1].

 Our approach to teaching the science-based CS1 is two pronged,
utilizing text based console applications on a personal computer to
teach the students standard programming techniques, and using
robotics as a means for teaching programming constructs and
sensory-motor computer interactions. This approach uses the science
students’ innate interest and the cache of robotics as motivating
mechanisms to help the students commit to demanding programming
practices. Once the students have mastered a few simple
programming skills, they can immediately advance to writing
programs to control a robot.

Our basic development of the robot component of the Introductory
CS1 course utilized the Lego™ RCX MindStorms robot kits. In this
paper, we describe the development of a system for teaching C/C++
using Lego™ NXT Robots, the NeXT generation of robot from
Lego, which is an extension of our development using RCX robots
[28].

2. BACKGROUND AND OVERVIEW
Computer science and programming practice has experienced a
considerable conceptual revolution in the past two decades and the
educational component has sought to keep pace with this
development. One important development has been the use of
robotics as both a motivating and a “hands on” approach toward
computer science education [4, 5] and to teach students algorithmic
thinking [4, 6]. These approaches have their origins in the turtle
graphics of Logo [7], whose aim was to teach algorithmic thinking
by moving a turtle around and not concentrating on the specifics of
the language. Other mini-languages that were developed were Karel
the Robot [7-9], which was designed as a “gentle” introduction to
Pascal for students taking their introductory course and Josef the
Robot [10]. The development of science-based computer science
instruction gave rise to such mini-languages as Wayfarer, Turingal
and Tortoise [11-13].

Recent developments in educational robotics have utilized Lego-
based robots embedded in a wide range of intelligent agent-based
environments [14-16] and which utilized other languages [17]. These
approaches have shown that working with the MindStorms Lego™
robot enhances the usual CS lab experience that entails sitting in
front of a computer screen and typing. The laboratory experience
now becomes an active learning session, enhances interaction with
other students [18], and gives them the opportunity to test their code
and solutions to a programming problem on a moving robot. More
importantly, Programming the MindStorms Lego™ robot gives
students immediate visual feedback, allowing visual debugging, and
reinforces the idea that the ultimate goal of a program is to
accomplish a task. For engineering and science students, it
accomplishes the important task of introducing them to sensory-
motor based computer control early in their careers.

Despite these advances in the use of robotics in computer science
education, students are still required to learn a traditional
programming language such as C/C++ for use in advanced courses,
and become successful programmers. Mini-languages, regardless of
their ability to simply convey concepts, do not prepare students to be
successful programmers. Therefore, there is a need to develop an
environment where students can learn to develop and debug code
that they write and also incorporate a robot environment. This is
especially important for science/engineering students whose future
will depend on not only being able to program in a language such as
C/C++, but also have an appreciation for how to control processes in
such an environment.

Unfortunately, no simple robotic platform is available to students for
home use or within a classical CIS laboratory environment. This is
especially true for newer operating systems such as Vista and the
latest Linux-based distributions. Furthermore, many existing
educational robotic systems require that students learn new
programming languages that have been developed for that specific
robot [2]. This is an inhibiting factor in learning programming
techniques using a basic procedural language such as C++. Another
important challenge in incorporating robotics into a first course on
programming is that most students will not have access to the robots
outside the classroom. There is therefore a need to have a uniform
development environment that each student can work with both at
school and at home.

Recently, we have developed a uniform system for teaching robotics
programming by combining open source environments that include
Sun™ VirtualBox and consolidating the tools that have been
developed for robot control within a single integrated development
environment (Code::Blocks), which was useful in helping students
learn to program and debug their code even at the beginning CS1
level [1, 19]. This environment has both advantages and
disadvantages. The advantages are that it is simple to use for a first
course in programming and open source environments have been
developed for its programming [28]. It also was important in
introducing students to the constructs in programming a robot, how
to compile programs for it, and how to communicate with the motors
and sensors that interact with the environment. The main
disadvantages are that it is obsolete, having been replaced by the
Lego™ NXT, and difficulties in computer-robot communication
within a classroom environment, where multiple robots and
computers are being utilized. The infra-red towers used for
communication are also a disadvantage in that they do not allow for
communication over far distances and are subject to noise and
miscommunication.

3. SYSTEM COMPONENTS
To address the many disadvantages in using the Lego™ RCX, we
developed an environment for programming the next generation
robot, the Lego™ NXT. In our development of the system, we have
used the same open source software as for the RCX system.
However, the incorporation of an appropriate cross-compiler was
more challenging than the incorporation of the RCX cross-compiler
and is described here. We have also developed scripts, which have
been stored on a DVD and are handed out to students, that self
installs each component of the system. The various system
components and their integration are described in this section.

3.1 The Lego ™ NXT Brick
The Lego™ NXT is a programmable robotics kit released by Lego in
late July 2006. It is the NeXT (NXT) generation Lego MindStorms
kit (Figure 1), and replaces the first generation kit called the Robotics
Invention System (RIS or RCX) (Figure 2). The NXT kit contains an
NXT brick, commonly called the “brick,” which receives a program
via Bluetooth or a standard USB connection. It has various
connectors for motor control and sensors. In addition, NXT allows
for output on an LCD screen and for sound tones. Programs
developed on the PC are downloaded to the brick via the Bluetooth
connection.
The brick can be configured so that it is a simple wheeled robot
(Figure 3), but has the capability to be configured as a biped, which
will not be considered in this paper. The motors and sensors can be
independently controlled, so that students can be taught about
decision as well as trajectory following. More importantly, they can
be taught fundamental programming constructs in the context of a

fun and exciting environment. It also has an LED display so that
messages can be sent to the robot and be displayed.

3.2 nxtOSEK, Code::Blocks, and ARM
Cross-Compiler

The Lego™ NXT system contains built in firmware for
programming the brick. Lego™ developed firmware for the brick to
interact with its own Robolab software, a propriety non-procedural
programming language and environment using LabView™ (National
Instruments, Inc). Because of the desire to teach robotics using
various languages, various types of firmware have been developed
by the open source community and are available for the NXT brick.
NxtOSEK, which is an open source platform for the Lego
MindStorms NXT, is uploaded by using the Enhanced NXT standard
firmware. This allows for other programming software (i.e. NXT-G,
NXC/NBC) to be used without replacing the firmware. Creating a
program for the brick in C++ is then no different from creating a
console program. Both are created using the C++ language, but the
brick runs the John Hansen Enhanced NXT firmware, which gives it
the ability to run C++ compiled code.

The tools involved required that extensive configurations be made,
since students work on various platforms (PC, Mac, and Linux).
Each of these platforms requires students to take a different approach
in configuring the tools. To simplify the configuration of the
environment, we used a virtual machine (See Section 3.5), which
provided an easily replicated environment for students to do their lab
assignments and experimentation [28].

The cross compiler for nxtOSEK, which uses the ARM processor,
was built from sources that were contained in GNUARM, an open
source cross-compiler. The compiler was then easily set up in
Code::Blocks. Thus, when students create projects within
Code::Blocks, they simply select the project type to be a nxtOSEK
project. The cross compiler is automatically selected for them, and
the language choice is set to nxtOSEK. Compiling a program for the
brick within Code::Blocks is therefore similar to the console

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and
then insert it again.

Figure 2

Figure 3

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 1

applications they learn to program. The cross-compiled linked C++
program that is to be executed on the brick is then downloaded to the
brick.

3.3 Robot Library Configuration
In order to make it easy for students to program the robots, we
incorporated the header files that nxtOSEK needed to control the
robot into a single header file called robot.h. In addition, nxtOSEK
does not provide a main function. It works on a series of tasks. We
defined in robot.h the nxtOSEK task to become main.

By having the main function available, CS1 students are able to
seamlessly move to the robot programming from the console
applications they had been exposed to.
An example of code using nxtOSEK to display a message on the
LCD screen of the brick is as follows:

#include "robot.h"
main() {
 Lcd lcd;

 lcd.clear();
 lcd.putf("s", "Hello Bluetooth");
 lcd.disp();

 while(1);
}

This program first includes the robot libraries and the re-definition of
task() to main() in the header file robot.h. The program
can then start with main() and the class Lcd and its object
functions become available. The method lcd.clear(), clears
the display, lcd.putf() sends the string to be displayed, i.e., in
this instance “Hello Bluetooth.” The designation “s”, as the first
parameter in the method indicates that a string is being sent. Since
the string is sent to a buffer, a separate method needs to be called,
lcd.disp(), which then displays the string on the LCD. The
while (1) statement insures that the program continues to run
indefinitely.

Another program that turns the wheels by programming the motors is
given as follows:

#include "robot.h"
Motor motorA(PORT_A); // brake by default
Motor motorB(PORT_B); // brake by default
main()
{

 Clock clock;

 motorA.setPWM(100);
 motorB.setPWM(100);

 clock.wait(1000);

 motorA.setPWM(0);
 motorB.setPWM(0);

}

This program utilizes the classes Motor and Clock to define
instances of the Motor class, motorA and motorB, and an
instance of Clock, clock. The program then utilizes the method
setPWM(), which sets the pulse-width-modulation parameter that
does the low level control of the motor. The method wait()
contained in the class Clock defines how long the motors are
activated and then the motors are deactivated by a parameter of
setPWM(0). While these programs use object oriented concepts,
they are simple enough so that CS1 students can understand them,
even without having grounding in object oriented programming.

3.4 Sun™ VirtualBox
Sun™ VirtualBox [25] is a freely available virtual machine software
package. This allows us to configure a machine with all the software
necessary for the class. The same windows are obtained if the user is
running the system on a computer whose host operating system is
Windows XP, Mac OS X, Windows Vista or Windows 7. Since each
student works on a common virtual machine (Ubuntu Linux client),
troubleshooting for instructors is simplified. Instructors may still be
faced with the problems that students encounter installing and
accessing the virtual machine. However these problems are minimal
compared to the problems related to having a student setup all the
individual robotic software files.

3.5 System Configuration
Since the student population exposed to this system and environment
is a CS1 group, we have developed a preconfigured system, which
allows the student to install the entire system on a wide range of
platforms, including Windows XP/Vista/7 and MacOS,
automatically. The Code::Blocks IDE and the robotics based tools
can also be installed directly on Unix/Linux.

We have created a DVD containing VirtualBox and the virtual
machine file. We have called our package CPlusVEBot (C++ Virtual
Environment Robot). A student uses CPlusVEBot to install
VirtualBox on their computer using our system file. When the virtual
machine begins running, the students have instant access to the IDE
and robotic software. This is the same software that is installed on
the computers in our laboratory. Whether students are running their
programs on a Mac, PC or Linux, they will have the exact same
interface and tools. A detailed student friendly manual has been
written, which guides the student through the installation

4. CLASSROOM EXPERIENCE
Our initial use of the system was on an RCX system and was
successful [28] for use with students in the first CS1 course, who are
generally unsophisticated in the use of systems and have had little
programming experience, if any. Despite this lack of experience all
students (25), in our initial class, were able to install the system the
first time without assistance. After two C++ programming
assignments to introduce simple C++ constructs, students were given
their first robot programming project (See Web Page [26]). The
students were able to successfully utilize the IDE to develop and
debug their programs and to use the emulator to verify the robot-
based program execution. Our initial feedback from the students is
that they were engaged in their project and were motivated to
complete it. We expect that the NXT experience will be equally
productive.

5. CONCLUSIONS AND FUTURE WORK
The primary advantage of evolving to the NXT robot is that it
utilizes a Bluetooth interface, which allows for a more targeted
communication between computer and robot. This makes the Lego™
NXT more reliable and can be programmed to pair a specific

interface with a particular robot. This reduces cross-talk and noise in
communication when a group of students utilize different robots in a
classroom setting. It also has better sensors and can be adapted to
build bipedal robots for learning algorithms about locomotion in a
more general setting. The use of the NXT robot also has the
advantage that it is a newer platform and utilized more object
oriented constructs, which introduces students to Objects and their
utility earlier in their careers in a motivating manner, using robot
programming. Students also learn about newer modes of
communication between the computer and peripheral devices, such
as Bluetooth. Thus, this robot platform has the potential for
development of courses for a wider range of topics in multimedia
applications. We anticipate that the system we have developed will
have a strong positive influence on both science, technology,
engineering, and mathematics (STEM) based instruction as well as
on basic computer science instruction. It will consolidate the learning
experience of STEM-based topics under the rubric of a programming
environment. It will also teach programming techniques using tools
that will motivate students to trace and debug their programs. This is
known to enhance good programming practice and helps students
learn better. It will also give them experience with a simple, freely
available IDE (Code::Blocks) early in their careers, which will serve
them well throughout their careers.

Another important benefit of our approach, which we have described
previously [28] is that the system can be used with Windows (XP,
Vista) and MacOS based systems. Moreover, despite the fact that no
students in our initial group had any experience with Unix/Linux,
they easily adapted to this environment and should help them in
future courses. The system has the added benefits of exposing
students, early in their careers, to a wide range of operating systems
and gives students the opportunity to experience first-hand the value
of virtualization, which is becoming an important topic in computer
system development.

Finally, the use of open source and freely available programs and
systems is also important in that students learn the importance of the
open source community in the development of computer resources.
This should reinforce their learning experience. Ongoing work
includes the development of a simulator for the Lego™ NXT robot,
which would allow students to develop programs at home and was a
useful learning tool using the RCX environment.

6. ACKNOWLEDGMENTS
Supported by NSF-CCLI award and PSC-CUNY-09

7. REFERENCES
[1] Gurwitz, C. and T. Raphan, “CS1 for an Early College

Program”; FECS, 13-17, 2008.
[2] Powers, K., et al., “Tools for Teaching Introductory

Programming: What Works”; ACM SIGCSE Bulletin, 38(1),
560-561, 2006.

[3] Moskal, B., D. Lurie, and S. Cooper, “Evaluating the
Effectiveness of A New Instructional Approach”; Proceedings
of the 35th SIGCSE Technical Symposium on Computer
Science Education. (ACM Press), 75-79, 2004.

[4] Beer, R.D., H.J. Chiel, and R.F. Drushel, “Using Autonomous
Robotics to Teach Science and Engineering”; Communications
of the ACM, 42(16), 85-92, 1999.

[5] Meeden, L., “Using Robots as an Introduction to Computer
Science”; Proceedings of FLAIRS-9: The Ninth Florida
Artificial Intelligence Research Symposium, 473-477, 1996.

[6] Powers, K., S. Ecott, and L.M. Hirshfeld, “Through the Looking
Glass: Teaching CS0 with Alice”; Proceedings of the 38th

SIGCSE Technical Symposium on Computer Science
Education; (ACM Press), 213-217, 2007.

[7] Papert, S., “MindStorms, Children, Computers, and Powerful
Ideas”. Basic Books, 1980.

[8] Pattis, R.E., “Karel the Robot: A Gentle Introduction To The
Art of Programming”. John Wiley and Sons, 1981.

[9] Pattis, R.E., J. Roberts and M. Stehlik, “Karel - The Robot, A
Gentle Introduction to the Art of Programming”, (Second Ed.).
Wiley, 1995.

[10] Tomek, I., “An Introduction to Computer Programming”.
Prentice Hall, Inc., Upper Saddle River, NJ: page 320, 1983.

[11] Brusilovsky, P., “Languages for Teaching the Principles of
Programming”, (in Russian); Informatika i Obrasovanije
(Informatics and Education). 1990.

[12] Brusilovsky, P., “The Intelligent Tutor, Environment and
Manual for Introductory programming”; Educational
Technology and Training International, 29(1), 26-34, 1992.

[13] Brusilovsky, P., E. Calabrese, J. Hvorecky, A. Kouchnirenko,
and P. Miller, “Mini-Languages: A Way To Learn
Programming Principles”; Education and Information
Technologies, 2(1), 65-83, 1997.

[14] Erwin, B., M. Cyr, and C.B. Rogers, “Lego Engineer and
Robolab: Teaching Engineering with Labview from
Kindergarten to Graduate School”; International Journal of
Engineering Education, 16(3), 181-192, 2000.

[15] Fagin, B.S., L.D. Merkle, and T. Eggers, “Teaching Computer
Science With Robotics Using Ada/MindStorms 2.0”;
Proceedings of the 2001 Annual ACM SIGAda International
Conference on Ada, 73-78, 2001.

[16] Azhar, M.Q., R. Goldman, and E. Sklar, “An Agent Oriented-
Oriented Behavior-Based Interface Framework For Educational
Robotics”; Agent-based Systems for Human Learning (ABSHL)
Workshop at Autonomous Agents and Multiagent Systems
(AAMAS-2006), 2006.

[17] Blank, D.S., M. L. Meeden, and D. Kumar, “Python Robotics:
An Environment for Exploring Robotics Beyond LEGOs”;
Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education, (ACM Press), 317-321, 2003.

[18] Imberman, S.P., “Teaching Neural Networks Using Lego Handy
Board Robots”; Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, (ACM Press),
312-316, 2003.

[19] Imberman, S.P. and R. Klibaner, “A Robotics Lab for CS1”;
Journal of Computing Sciences in Colleges, 21(2), 131-137,
2005.

[20] Hoenick, J., Available from:
http://hoenicke.ath.cx/rcx/brickemu.html.

[21] Sklar, E., et al., “Educational Robotics in Brooklyn”; AAAI-06
Mobile Robot Workshop, 2006.

[22] Flowers, T.R. and K.A. Gosset, “Teaching Problem Solving,
Computing, and Information Technology with Robots”; Journal
of Computing Sciences in Colleges, 17(6), 45-55, 2002.

[23] Hundersmarck, C., C. Mancinelli, and M. Martelli, “Viva la
BrickOS”; Journal of Computing in Small Colleges, 19(5), 305-
307, 2004.

[24] Hickman, G.D., “An Overview of Virtual Machine (VM)
Technology and Its Implementation in I.T. Student Labs at Utah

Valley State College”; Journal of Computing in Small Colleges,
23(6), 203-212, 2008.

[25] Sun Microsystems, Available from: http://www.virtualbox.org/.
[26] Delman, A., L. Goetz, Y. Langsam, and T. Raphan, Available

from:
http://eilat.sci.brooklyn.cuny.edu/cis1_5/Programming%20the%
20LEGO.pdf.

[27] Goetz, L., Y. Langsam, and T. Raphan, Available from:
http://www.sci.brooklyn.cuny.edu/~goetz/codeblocks/codeblock
s-instructions.pdf

[28] A. Delman, L. Goetz, Y. Langsam, and T. Raphan,
“Development of a System For Teaching C/C++ Using Robots
in the first CS1 Course Using Open Source Software”,
Proceedings of the WORLDCOMP'09 - The 2009 World
Congress in Computer Science, Computer Engineering, and
Applied Computing

