
Development of a System for Teaching C/C++ Using

Robots and Open Source Software in a CS1 Course

A. Delman, L. Goetz, Y. Langsam, T. Raphan
Department of Computer and Information Science, City University of New York (Brooklyn College),

Brooklyn, New York, USA

Abstract - This paper describes the development of a system

for teaching C/C++ using Lego™ RCX Robots in a CS1

college course on introductory programming. The system has

been implemented using an integrated development

environment (IDE) developed by the open source community

(Code::Blocks). We have modified the IDE so that it can call

a C/C++ cross-compiler for the RCX whose standard

firmware has been replaced by the BrickOS open source

operating system. An open source emulator (BrickEMU) has

also been integrated within the Code::Blocks environment.

The IDE and robotic software executes on a virtual machine
running under the freely available software, Sun™

VirtualBox. This allows for a uniform programming platform

for Windows, MacOS, and Unix/Linux. The use of robots in

CS1 affords science and engineering students the opportunity

to learn sensory-motor based control, to work with an IDE

early in their careers, and to gain experience with

development and debugging tools that can be utilized

throughout the students’ academic and professional careers.

Keywords: College; Introductory Programming, Robotics;

Science; CS 1.

1 Introduction

Students entering an Introductory Course in Programming

have mixed backgrounds and interests. While some students
are oriented to the business aspects of computing, other

students would be better served by a course whose emphasis

is on scientific and engineering applications of programming,

which can be better integrated with the science, technology,

engineering and mathematics (STEM) courses [1]. To this

end, we have designed a CS1 course, which teaches

introduction to programming using C++ and using STEM

topics as the basis for instruction. While covering the same

computer science material as the traditional CS1 class, the

programming examples, as well as the homework and

programming projects are drawn from a wide variety of
scientific, mathematic and engineering problems. We have

also developed and implemented robot-based instructional

material, which we have incorporated into the course content.

 Our approach to teaching the science-based CS1 is

therefore two pronged. We utilize text based console

applications on a personal computer to teach the student

standard programming techniques, but use examples from

STEM topics. We also use robotics as a means for teaching

programming constructs and sensory-motor computer

interactions. This approach uses the science students’ innate

interest and the cache of robotics as motivating mechanisms to

help the students commit to demanding programming

practices. Once the students have mastered a few simple

programming skills, they can immediately advance to writing

programs to control a robot. The robotics component should

also give students an introduction to creating programs for

embedded machines and introduces the students to basic

concepts in engineering. In this paper, we describe the system
for teaching C/C++ using Lego™ RCX Robots in a CS1

college course for introductory programming that we have

developed.

2 Background and Overview

Computer science and programming practice has

experienced a considerable conceptual revolution in the past

two decades and the educational component has sought to

keep pace with this development. Various tools have been

developed to help students learn programming techniques,

especially at the beginning level [2]. These have included

narrative programming tools, visual programming tools, flow

model tools, and tiered language tools. The narrative tools

attract students because of the goal directed nature of the task
[3]. Visual and flow model tools enforce specific

environments and allow students to manipulate graphical

entities [2].

An important component of science/engineering education

is learning how sensors and motors can be controlled. As a

result, robot environments have also been especially useful in

introductory computer science education as both a motivating

and a “hands on” approach toward computer science

education [4, 5] and to teach students algorithmic thinking [4,

6]. These approaches have their origins in the turtle graphics

of Logo [7], where a “turtle” was programmed to move using
a small set of language tools, which in turn stimulated the

development of the mini-language approach to teaching

programming principles. The rationale for using a mini-

language is that a student learns programming concepts by

controlling a turtle or robot acting in a microworld. The aim is

to teach algorithmic thinking rather than concentrating on the

specifics of the language. The first and most popular mini-

language was Karel the Robot [7-9], which was designed as a

“gentle” introduction to Pascal for students taking their

introductory course. Other robot-based mini-languages
include Josef the Robot [10]. The development of science-

based computer science instruction gave rise to such mini-

languages as Wayfarer, Turingal and Tortoise [11-13].

Recent developments in educational robotics have utilized

Lego-based robots embedded in a wide range of intelligent

agent-based environments [14-16] and utilized other

languages [17]. These approaches have shown that working

with the MindStorms Lego™ robot enhances the usual CS lab

experience that entails sitting in front of a computer screen

and typing. The laboratory experience now becomes an active

learning session, enhances interaction with other students

[18], and gives them the opportunity to test their code and
solutions to a programming problem on a moving robot. More

importantly, Programming the MindStorms Lego™ robot

gives students immediate visual feedback, allowing visual

debugging, and reinforces the idea that the ultimate goal of a

program is to accomplish a task. For engineering and science

students, it accomplishes the important task of introducing

them to sensory-motor based computer control early in their

careers.

Despite these advances in the use of robotics in computer

science education, students are still required to learn a

traditional programming language such as C/C++ for use in
advanced courses, and become successful programmers. Mini-

languages, regardless of their ability to simply convey

concepts, do not prepare students to be successful

programmers. Therefore, there is a need to develop an

environment where students can learn to develop and debug

code that they write and also incorporate a robot environment.

This is especially important for science/engineering students

whose future will depend on not only being able to program in

a language such as C/C++, but also have an appreciation for

how to control processes in such an environment.

Unfortunately, no simple robotic platform is available to

students for home use or within a classical CIS laboratory
environment. This is especially true for newer operating

systems such as Vista and the latest Linux-based distributions.

Furthermore, many existing educational robotic systems

require that students learn new programming languages that

have been developed for that specific robot [2]. This is an

inhibiting factor in learning programming techniques using a

basic procedural language such as C++. Another important

challenge in incorporating robotics into a first course on

programming is that most students will not have access to the

robots outside the classroom. There is therefore a need to

have a uniform development environment that each student
can work with both at school and at home.

Recently, there has been considerable development of

open source and free systems that include Integrated

Development Environments (IDE’s). This offers the

possibility of developing programming environments, which

would be useful in helping students learn to program and
debug their code even at the beginning CS1 level [1, 19].

There also exists an open source virtual environment, which

offers the possibility of consolidating robot programming

environments across a wide range of platforms within a single

IDE, using open source systems and the C++ programming

language. Our goal for an environment was met by the use of

a virtual machine (Sun™ VirtualBox) and consolidating the

tools that have been developed for robot control within a

single integrated development environment (Code::Blocks).

3 System Components

In our development of the system, we have used open

source software, because of the non-cost, flexibility and

customizations which are available. In doing so, we have
combined various software packages to create an easy to use

environment, which we have fully documented. We have also

developed scripts, which have been stored on a DVD and are

handed out to students, that self installs each component of

the system.

3.1 Code::Blocks IDE

Code::Blocks is the open source IDE that we have chosen

as the environment for compiling, debugging and running the

virtual and real robot system. While systems such as

Windows, MacOS, and Linux contain other IDE’s, this open

source system is freely available, runs across all platforms and
has an active development and user community, who

continually upgrade the system. In addition, the use of

Code::Blocks adds uniformity to the student learning

experience and students can easily interact with each other.

Code::Blocks also has the flexibility to add compilers,

debuggers, and emulators to the environment as we describe

in this report.

3.2 The Lego ™ RCX Brick

For the robots, we have chosen the Lego™ Mindstorms

Robotics Invention kit. The kit contains an RCX (Robotic

Command eXplorer) which receives a program via infrared

communications (Figure 1A). The RCX is in the shape of a
brick, and is commonly called the “brick.” It has various

connectors for motor control and sensors. In addition, a

student can communicate with the RCX via an infrared remote

(IR). The RCX allows for output on an LCD screen and for

sound tones. Programs developed on the PC are downloaded

to the brick via the Infrared (IR) USB tower (Fig. 1B).

 A B C

Fig 1. A, RCX Brick. B, USB Infrared Tower. C, BrickEMU- emulator for the Lego™ RCX Brick

The Lego™ Mindstorm robot system is a simple wheeled

robot, which has three sensor ports (Fig. 1A, Sensor 1, Sensor

2, Sensor 3) and three motor ports (Fig. 1A, A, B, C). The

motors and sensors can be independently controlled, so that

students can be taught about decision as well as trajectory

following. More importantly, they can be taught fundamental
programming constructs in the context of a fun and exciting

environment. It also has an LED display so that messages can

be sent to the robot and be displayed.

3.3 BrickEmu

The cost of the Lego™ RCX system used in the course is

about $170 and the typical student will not purchase a robot to

practice programming at home. To allow the student to

develop their programs independent of the computer

laboratory, we provide the student with an open source

emulator for the brick, which runs under Linux (Fig. 1C) [20].

We have customized the Code::Blocks IDE to include tools

for transferring the program to either a “real” RCX Brick or to
the BrickEMU emulator.

When executing on the emulator, the robot does not

actually move on the screen. Rather a meter representing the

power and direction of the motors is displayed and gives the

student an indication of how their robot would move. The

student can also emulate sensor input and battery level by

interacting directly with the sliders on the BrickEMU during

the program’s execution. Additionally, there is an LCD on the

emulator to which output maybe written.

A separate remote control emulator is also available in a

separate window with which the student can interact with the
BrickEMU. In class, a real remote control is available, which

provides the student with a way to remotely input to the robot

and practice event driven programming.

3.4 BrickOS

The Lego™ RCX system contains built in firmware for

programming the brick. Lego™ developed firmware for the

brick to interact with its own Robolab software, a propriety

non-procedural programming language and environment using

LabViewTM (National Instruments, Inc). Because of the desire

to teach robotics using various languages, various types of

firmware have been developed by the open source community

and are available for the RCX brick. These include Java-based

firmware (LeJOS) [21] as well as C++ based firmware

(BrickOS). A simulator has also been developed [22], which

enables a large number of students to do programming before

actually working with the real robot. Thus, creating a program
for the brick in C++ is no different than creating a console

program. Both are created using the C++ language, but the

brick runs the BrickOS firmware, which gives it the ability to

run C++ compiled code. It should be noted that the University

of Scranton has developed their own Real-Time Systems

course using BrickOS and the RCX. [23]

Because we utilize the C++ programming language in our

existing curriculum, we utilized the BrickOS firmware in our

project. Other firmware could be utilized within our

environment. The tools involved required that extensive

configurations be made, since students work on various

platforms (PC, Mac, and Linux). Each of these platforms
require students to take a different approaches in configuring

the tools. To simplify the configuration of the environment,

we used a virtual machine (See Section 3.5), which provided

an inexpensive and easily replicated environment for students

to do their lab assignments and experimentation [24].

The cross compiler for BrickOS was easily set up in

Code::Blocks. Thus, when students create projects within

Code::Blocks, they simply select the project type to be a

BrickOS project. The cross compiler is automatically selected

for them, and the language choice is set to BrickOS.

Compiling a program for the brick within the IDE is therefore
similar to the console applications they learn to program. The

cross-compiled linked C++ program that is to be executed on

the brick is then downloaded to the brick or the emulator and

the run button is activated to run the program.

3.5 Sun™ VirtualBox

Sun™ VirtualBox [25] is a freely available virtual

machine software package. This allows us to configure a

machine with all the software necessary for the class. A screen

shot of how the components discussed in Sections 3.1-3.4 are

integrated by the VirtualBox software is shown in Fig. 2. The

BrickOS C++ robot program is shown in the Code::Blocks

editing window on an Ubuntu Linux client hosted by

VirtualBox running on a Windows XP host. The robot

emulator is shown in a window on the left side.

process and the use of each component [26]. A student

friendly manual for Code::Blocks is also available [27].

Fig. 2. BrickEMU and Code::Blocks IDE running on an Ubuntu Linux client/Windows XP host

The same windows are obtained if the user is running the

system on a computer whose host operating system is Mac OS

X or Windows Vista. Since each student works on a common

virtual machine (Ubuntu Linux client), troubleshooting for
instructors is simplified. Instructors may still be faced with the

problems that students encounter installing and accessing the

virtual machine. However these problems are minimal

compared to the problems related to having a student setup all

the individual robotic software files.

3.6 System Configuration

Since the student population exposed to this system and

environment is a CS1 group, we have developed a

preconfigured system, which allows the student to install the

entire system on a wide range of platforms, including

Windows XP/Vista and MacOS, automatically. The
Code::Blocks IDE and the robotics based tools can also be

installed directly on Unix/Linux.

We have created a DVD containing VirtualBox and the

virtual machine file. We have called our package CPlusVEBot

(C++ Virtual Environment Robot). A student uses

CPlusVEBot to install VirtualBox on their computer using our

system file. When the virtual machine begins running, the

students have instant access to the IDE and robotic software.

This is the same software that is installed on the computers in

our laboratory. Whether students are running their programs

on a Mac, PC or Linux, they will have the exact same
interface and tools. A detailed student friendly manual has

been written, which guides the student through the installation

4 Classroom Experience

Students in the first CS1 course are generally

unsophisticated in the use of systems and have had little

programming experience, if any. Despite this lack of

experience all students (25), in our initial class, were able to
install the system the first time without assistance. After two

C++ programming assignments to introduce simple C++

constructs, students were given their first robot programming

project (See Web Page [26]). The students were able to

successfully utilize the IDE to develop and debug their

programs and to use the emulator to verify the robot-based

program execution. Our initial feedback from the students is

that they were engaged in their project and were motivated to

complete it.

5 Conclusions and Future Work

We anticipate that the system we have developed will

have a strong positive influence on both science, technology,

engineering, and mathematics (STEM) based instruction as
well as on basic computer science instruction. It will

consolidate the learning experience of STEM-based topics

under the rubric of a programming environment. It will also

teach programming techniques using tools that will motivate

students to trace and debug their programs. This is known to

enhance good programming practices and helps students learn

better. It will also give them experience with a simple, freely

available IDE early in their careers, which will serve them

well throughout their careers.

Another important benefit of our approach is that students

in this course generally have computers that range over
Windows (XP, Vista) and MacOS based systems. No students

in our initial group had any experience with Unix/Linux.

Nevertheless introducing students to Linux will help them in

later courses that use the Unix/Linux operating system. The

system has the added benefits of exposing students, early in

their careers, to a wide range of operating systems and gives

students the opportunity to experience first-hand the value of

virtualization, which is becoming an important topic in

computer system development.

Finally, the use of open source and freely available

programs and systems is also important in that students learn

the importance of the open source community in the
development of computer resources. This should reinforce

their learning experience. Ongoing work includes the

development of a similar integrated environment for the

Lego™ NXT robot, which has a wider range of interfaces and

will further broaden student experience early in their careers.

6 References

[1] Gurwitz, C. and T. Raphan, “CS1 for an Early College

Program”; FECS, 13-17, 2008.

[2] Powers, K., et al., “Tools for Teaching Introductory

Programming: What Works”; ACM SIGCSE Bulletin, 38(1),

560-561, 2006.

[3] Moskal, B., D. Lurie, and S. Cooper, “Evaluating the

Effectiveness of A New Instructional Approach”;

Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education. (ACM Press), 75-79, 2004.

[4] Beer, R.D., H.J. Chiel, and R.F. Drushel, “Using

Autonomous Robotics to Teach Science and Engineering”;

Communications of the ACM, 42(16), 85-92, 1999.

[5] Meeden, L., “Using Robots as an Introduction to

Computer Science”; Proceedings of FLAIRS-9: The Ninth

Florida Artificial Intelligence Research Symposium, 473-477,

1996.

[6] Powers, K., S. Ecott, and L.M. Hirshfeld, “Through the
Looking Glass: Teaching CS0 with Alice”; Proceedings of

the 38th SIGCSE Technical Symposium on Computer

Science Education; (ACM Press), 213-217, 2007.

[7] Papert, S., “Mindstorms, Children, Computers, and

Powerful Ideas”. Basic Books, 1980.

[8] Pattis, R.E., “Karel the Robot: A Gentle Introduction To

The Art of Programming”. John Wiley and Sons, 1981.

[9] Pattis, R.E., J. Roberts and M. Stehlik, “Karel - The

Robot, A Gentle Introduction to the Art of Programming”,

(Second Ed.). Wiley, 1995.

[10] Tomek, I., “An Introduction to Computer

Programming”. Prentice Hall, Inc., Upper Saddle River, NJ:
page 320, 1983.

[11] Brusilovsky, P., “Languages for Teaching the Principles

of Programming”, (in Russian); Informatika i Obrasovanije

(Informatics and Education). 1990.

[12] Brusilovsky, P., “The Intelligent Tutor, Environment

and Manual for Introductory programming”; Educational

Technology and Training International, 29(1), 26-34, 1992.

[13] Brusilovsky, P., E. Calabrese, J. Hvorecky, A.

Kouchnirenko, and P. Miller, “Mini-Languages: A Way To

Learn Programming Principles”; Education and Information

Technologies, 2(1), 65-83, 1997.

[14] Erwin, B., M. Cyr, and C.B. Rogers, “Lego Engineer
and Robolab: Teaching Engineering with Labview from

Kindergarten to Graduate School”; International Journal of

Engineering Education, 16(3), 181-192, 2000.

[15] Fagin, B.S., L.D. Merkle, and T. Eggers, “Teaching

Computer Science With Robotics Using Ada/Mindstorms

2.0”; Proceedings of the 2001 Annual ACM SIGAda

International Conference on Ada, 73-78, 2001.

[16] Azhar, M.Q., R. Goldman, and E. Sklar, “An Agent

Oriented-Oriented Behavior-Based Interface Framework For

Educational Robotics”; Agent-based Systems for Human

Learning (ABSHL) Workshop at Autonomous Agents and
Multiagent Systems (AAMAS-2006), 2006.

[17] Blank, D.S., M. L. Meeden, and D. Kumar, “Python

Robotics: An Environment for Exploring Robotics Beyond

LEGOs”; Proceedings of the 34th SIGCSE Technical

Symposium on Computer Science Education, (ACM Press),

317-321, 2003.

[18] Imberman, S.P., “Teaching Neural Networks Using

Lego Handy Board Robots”; Proceedings of the 34th SIGCSE

Technical Symposium on Computer Science Education,

(ACM Press), 312-316, 2003.

[19] Imberman, S.P. and R. Klibaner, “A Robotics Lab for

CS1”; Journal of Computing Sciences in Colleges, 21(2),
131-137, 2005.

[20] Hoenick, J., Available from:

http://hoenicke.ath.cx/rcx/brickemu.html.

[21] Sklar, E., et al., “Educational Robotics in Brooklyn”;

AAAI-06 Mobile Robot Workshop, 2006.

[22] Flowers, T.R. and K.A. Gosset, “Teaching Problem

Solving, Computing, and Information Technology with

Robots”; Journal of Computing Sciences in Colleges, 17(6),

45-55, 2002.

[23] Hundersmarck, C., C. Mancinelli, and M. Martelli,

“Viva la BrickOS”; Journal of Computing in Small Colleges,
19(5), 305-307, 2004.

[24] Hickman, G.D., “An Overview of Virtual Machine

(VM) Technology and Its Implementation in I.T. Student

Labs at Utah Valley State College”; Journal of Computing in

Small Colleges, 23(6), 203-212, 2008.

[25] Sun Microsystems, Available from:

http://www.virtualbox.org/.

[26] Delman, A., L. Goetz, Y. Langsam, and T. Raphan,

Available from:

http://eilat.sci.brooklyn.cuny.edu/cis1_5/Programming%20th

e%20LEGO.pdf.

[27] Goetz, L., Y. Langsam, and T. Raphan, Available from:
http://www.sci.brooklyn.cuny.edu/~goetz/codeblocks/codeblo

cks-instructions.pdf

